
The laws desc r ib ing  the mot ion of the domain boundary ,  given by the r e l a t ions  (6) and (7), e n c o m p a s s  
a suff icient ly b road  col lect ion of engineer ing  h e a t -  and m a s s - t r a n s f e r  p rob lems .  

I t  should be r e m a r k e d  that  we can a lso  apply the method in quest ion to the s y s t e m  (1), where in  the l a ~ e r  
is augmented  by hea t  and m a t t e r  sou rces ;  we can also apply it to a s y s t e m  containing, not two, but n t r a n s f e r  
potent ia ls .  
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is the t e m p e r a t u r e ;  
is  the m o i s t u r e  content; 
is the F o u r i e r  number ;  
a r e  the Kossov ich ,  Lykov,  and Posnov number s ,  r espec t ive ly ;  
where  e is  the f ac to r  of phase  t rans i t ion  of a liquid into a vapor ;  
f o r  a p la te ,  cy l inder ,  and sphere ,  r e spec t ive ly .  
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A method is p roposed  for  computing the t e m p e r a t u r e  and posi t ion of the phase  in ter face  based 
on the p a s s a g e  to new v a r i a b l e s  and a new function. The t r an s fo rma t ion  is invar iant  re la t ive  to 
the hea t -conduct ion  equat ion,  and the boundar ies  in the new v a r i a b l e s  a re  fixed. 

A whole s e r i e s  of p a p e r s  on the Stefan p rob l em ex is t ,  which a re  su rveyed  sufficiently complete ly  in [1], 
and where in  a g rea t  deal  of or iginal  m a t e r i a l  a s soc ia t ed  with the proof  of the uniqueness and exis tence of the 
solution is also genera l ized.  Numer i ca l  s c h e m e s  fo r  the solution a re  p roposed  in [2]. Significant attention is 
paid the re  to the m a t h e m a t i c a l  a spec t  of  the quest ion,  but no r e su l t s  a re  p re sen ted  of p rac t i ca l  t e s t s  o r  of c o m -  
putat ions.  V. G. Melamed  [3] a lso  gave a numer i ca l  solut ion,  r ea l i zed  in applicat ion to the case  of f reez ing  
soils .  Fundamenta l  r e s u l t s  of a cycle  of the au tho r ' s  work  a r e  p resen ted  in [3]. An analogous p rob lem in 
t e r m s  of phys ica l  content ,  but taking account  of snow and the influence of the a t m o s p h e r e ,  is considered in [4]. 
Le t  us  note that  the na ture  of the method of solution to be used  is de te rmined  by the spec i f ics  of some  definite 
p r o b l e m  to be  solved,  which is a p a r t i c u l a r  ca se  of the genera l  Stefan p rob lem.  The p r e s e n t  paper ,  which is 
or iented  toward the hydrome teo ro logy  a r e a  f r o m  the viewpoint of p r ac t i ca l  applicat ions,  i s  organized  in a 

s i m i l a r  plan.  

We fo rmula te  the p rob l em  below. Let  us examine  the one-d imens iona l  case .  Between two f ixed  planes 
z = 0 and z = H at a t ime  t = 0 le t  t he re  be n a l t e rna t ing  l a y e r s  of m a t e r i a l  in the liquid or  solid aggregate  s tate  
with the moving in te r faces  z = hm(t) (m = 1, 2 . . . . .  n - 1 ) ,  where  phase  t rans i t ion  occurs .  Le t  one l aye r  of 
another  m a t e r i a l w h o s e  ou te r  boundary  moves  according  to the known law z = - l  (t) a lso  adjoin the su r face  z = 0. The 
initial  t e m p e r a t u r e  dis t r ibut ion is given in the whole domain T~ Let  us consider  the t e m p e r a t u r e  a known 
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function of the t ime on the bounding planes z = -/(t) and z = H. For  z = 0 it is natural  to assume the condition 
to be sat isf ied to be the equality of the t empera tu res  and the heat  fluxes. Heat balance holds on the moving 
boundaries with the phase t ransi t ion,  and the t empera tu re  equals the phase- t rans i t ion  tempera ture  T O . Finally 
we will assume it equal to zero.  In the genera l  case  this is always attained by the introduction of the dif fer-  
ence between the sought t empera tu re  and T 0. The tempera ture  field and the posit ion of the phase interface 
are  to be determined.  We consider  the coefficients X and a to be t ime-dependent  and discontinuous functions 
of z, where they remain  constant within the l imits  of each layer .  Written mathematical ly ,  this reduces  to the 
following: 

OT 0 ~, (z, t) , 
% 0 ~  - =  Oz Oz / 

Tl,=-t(t) = O~ (t), (l (0) =~ 0), 

T]z=-o = T/z=~-o, 

),(z, t) OT z=-o OY i Y z  = ;~ (z, t) -~z  l~=+o ' 

(1) 

(2) 

(3) 

(4) 

T!z=h~(O-0 = Tl~=h~(t)+0 = O, (h m (0) v~: 0), 

[ O_if, u ~ l j O T  -t=Adh'~dt (_l)m+, ~(z, 0 - -  -~.(~, i)~-Iz~(~)+0| , 
Z iz=hm(t)--O 

(5) 

(6) 

T!~=H = ~ (0, (7) 

rlf=o = T ~ (z). (S) 

If the f i r s t  layer  is crys ta l l ine ,  then the even values of the exponent with - 1  correspond to zones where 
the substance is in the solid aggregate state and the odd values,  to zones where the substance is in the liquid 
state. 

Now let us part i t ion the whole t ime of in teres t  to us into a number of steps At = tJ - t  j-1 (j = 1, 2, . . . ). 
Init ially,  we d igress  f rom the problem formulated above and examine some m- th  layer  in the j - th  step, for  
which we consider the temperature of the moving boundaries to be known functions of time in the interest of 
generality. 

Let us introduce the variables ~ = ~(z, t), r = r(t) in place of z and t; let us also introduce the function 

u(~, "c) = f(~, r) T (~, T) (9) 

in place of T(z, t) (the supersc r ip t  j will t empora r i ly  be omitted everywhere) .  

Henceforth,  let us pose the problem of defining them in such a way that the boundaries would be fixed in 
the new var iables  and the equation for u(~, r) would have the form of the thermal-conduct iv i ty  equation, i.e., we 
should have 

Ou 02u 
- - ~ - b  - -  

O~ O~ 2 
Taking account of (9), this can be rewri t ten  as 

o7 ~ ( 6~f 
OT O~ \ O~ 2 

In turn,  in the new var iables  in place of (1) we will have 

O~ - a ~ - ~ z  ; d~; O~ ~ - d ~  

Substituting (12) into (11), we obtain 

( O[ --b O~f ~ T--[2b 0f 
O~ O~ ~ ] O~ 

(10) 

of o3 o ~  
0~ 0;  '-+-f --~-~2 ) �9 (11) 

O~ \ OY --a Oz~ ], 

dt I O~T =0. 
d~ - - b j  0~ ~ (13) 
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I t  fo l lows  f r o m  (13) thai: the  fo l lowing  r e l a t i o n s h i p s  should  be  va l id  f o r  c o m p l i a n c e  with  the condi t ions  
p o s e d  above :  

Of = b ~ (14) 
t 

Ow O~ ~ 

O ln f = - - 1  clt [ O~ - -a  O'~ , ~ 
(15) 

a~ " 2b d'~ ~ Ot Oz ~ ) '  

as '~' ,u _ l, {16) 
Oz I d, a 

A deduc t ion  m a y  be  m a d e  f r o m  the f o r m  of (16) tha t  g can  be only a l i n e a r  func t ion  of z; t hus ,  we should 

w r i t e  

; = ,~ (t) z + ~ (t). 

R e q u i r i n g  ~ = m - 1  ff z = hm_l( t )  and ~ = m ff z = hm( t ) ,  we  f ind 

z - - h . , ( t )  + m ,  ( r a - - l ~ < ~ < r n ) ,  

(ah,,, (t) = h,,, (t) - -  h,,,_, (t)). 

T a k i n g  accoun t  of (17), f r o m  (16) we ob ta in  

a d~ 
dx = - -  

b 
Ah~ (t) ot ; dx = ab d (Ah,n)ah~ 

dt 

d(Ah m) 

(17) 

T h i s  l a t t e r  e x p r e s s i o n  can  be  i n t e g r a t e d  if  i t  i s  a s s u m e d  tha t  

Ah~--AhL-' d(ahm) _ 
dt At 

In  th i s  c a s e  we  ob ta in  
aAt [ Ah. , ( t ) - -  A/r ] 

* =  t , (ah~--Ah~-~-  Ah,At)Ag:'  " 

(18) 

(19) 

Since f r o m  (18) i t  r e s u l t s  tha t  

Ah m (t) = Ah/m-t + ( A h ~ -  a h / - ' )  ( t -  t ]-I )/At, (19') 

by  u s ing  th i s  l a t t e r  e x p r e s s i o n  we ob ta in  a f o r m u l a  f o r  ~" of  the f o r m  

x =  a ( t - - t i - ' )  1 
b hh  m (t) hh~ -1 

Now le t  us  def ine  the  cons t an t  b in (20) in such  a way  tha t  f o r  t = tJ we would have  r = 1. 

aAt 

AhimAh~ -1 

should  be  sa t i s f i ed .  Then, f i na l l y ,  

(2 0) 

To  do t h i s ,  the equal i ty  

(21) 

t - -  t i - '  Ah~ 

T o  d e t e r m i n e  the  f o r m  of  the  f u n c t i o n  f(~, r ) ,  l e t  u s  u s e  (15) t o g e t h e r  w i t h  (17),  (21),  and (22). 
ing (15) ,  we arrive at the dependence 

=CCx) exp t~--~ ~- i t - - m  + 5) ~ - - ( m  --5)~-1t, T) 
( z  1 

(22) 

Af te r  i n t e g r a t -  

w h e r e  

a h ~ -  a h L - '  ~ = hl . --  hL -~ 

~b ('r) = 2b [Ah~ - -  (Ah~ - -  Ah~ -~) T] ' Ah / - -  Ah~ - -T-  ' 
(2~) 
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hh;tLh z 1 . : ~ [ .  
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2 3 4, 

Fig. 1. Thawing soil: 1) soil  
sur face  t e m p e r a t u r e  T (~ 2) 
thawing- layer  th ickness  Ah 1 
(cm); 3) f r e e z i n g - l a y e r  th ick-  
ness  All 2 (cm); t ,  days.  

and C(r) is an unknown function which we find by using (14) by subst i tut ing the l a s t  express ion  therein .  Then 

C( 'O= C1 [ - , ( ' 0  (m--~5) ~ ] 
Whh~ - - (ahL- -hh~- ' ) - -~  e x p  2 " 

Hence,  we o b t a i n  

C~ ] (Ahs -- Ah~ -~ ) (; -- m + 6) 2 } 
f (~' ~) = ]/Ah~ (Ah~-- Ah~7') z exp [ ~ ~ - - - - ~ - - - -  ~ ) ~  . (24) 

The fac to r  C 1 can be se t  equal to some constant  value with the dimensional i ty  of a length,  which we se lec t  
equal to ZLh~ i. We obtain the function u(~, r) by subst i tut ing (24) into (9). 

Different  pa r t i cu l a r  cases  can be .obtained f r o m  (17), (22), (23), and (24). Thus,  we should put there in  
the following: fo r  m = 0, Ah0(t) - l  (t), l~0 = l~ -1= 0, and 5 = 0; fo r  m = 1, Ahl(t) ~-hl(t) and 6 = 1; for  m = n, 
zkhn(t) = H-hn_l ( t )  and 6 = 0. The f i r s t  and th i rd  of the c a s e s  cons ide red  c o r r e s p o n d  to p la tes  fo r  which ~ e  
uppe r  boundary moves  and the lower  is f ixed and has  the coordinates  z = ~ = 0 o r  z = H, r = n; the second case  
c o r r e s p o n d s  to the p r e s e n c e  of an uppe r  f ixed boundary,  while the lower  moves .  Proceeding  analogously,  o ther  
p a r t i c u l a r  c a s e s  can be obtained also, but fo r  our  pu rpose s  those p r e s e n ~ d  above a r e  sufficient  because  the i r  
combinat ion will y ie ld  the p r o b l e m  posed.  

Now le t  the quantity r be the computat ional  spacing. The veloci ty  is kept constant  within each t ime s tep,  
but changes during pa s s age  to the next  s tep ,  i .e . ,  in this case  the curv i l inear  law of p h a s e - i n t e r f a c e  motion is 
approx imated  by broken  l ines.  Le t  us sa t i s fy  the boundary conditions for  T = 1. Then introducing the notation 

u:(5 1 ) ~ u i ( ; ) ,  u:(~, o ) = u m ( ~ ) ,  

~(;,  1 )~Z : ( ; ) ,  F~(;, ~)-~ai (;), 

we will have 

O~Ui 
UJ - -  W -1 = bl (~) - - ,  (25) 

[ l:--l:-! ] ~i  (1), (26) UII~=_I = exp 4b i (--1) l i-~ 

Uil;=-o = Ui]~=+o , (27) 

~J (~) od: ;=-o= ~i (~) ou i I I ' (28) I: O~ . h i O~ ,~=+o 

Uil;=m--O =U'l;=m+0 =0 ,  (29) 
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Ah~ 

• [ 

s I 
exp 4-~-7 ( ~  J 

I " f--l (ah~+, - -  Ahg+O (8 + I) ~ ] 
] 

OUJ f - -  ~/ (~) 
0~ k=m-o Ah~z+, X 

Old~ = A ~ahJ+' (30) 
O~ ~=~+0 At 

V J l ~  = $'; (1). (31.) 

The convers ion  is c a r r i e d  out fo r  j > 1 .  Thus ,  if uJ - i  is the solution for  the j - l - t h  s t em for  r = 1, then 
we will have in the j - t h  s tep for  r = 0 

_ ]} 
v a h ' -  T : 4 b{ (~)..ah~-' b;-' (~) ah~ -2 

The e x p r e s s i o n  (32) p lays  the p a r t  o f  init ial  conditions in the j - t h  step.  No convers ion  is c a r r i e d  out in the 
f i r s t  s tep ,  but the quantity u~ can be obtained f r o m  (9) and (24) fo r  r = 0, so that  

/-A-~mAh~ exp [ (Ah~-Ah~ ~ (~) Ahem ] u0 (~) = Y T~ (~) (32,) 

Therefore, it can be stated that the problem with moving boundaries is in no way different from ordinary 
problems on heat propagation in composite plates with fixed planes of separation in its formal description [with- 
out (30)] because of the transformations mentioned. Hence, any of the classical numerical schemes is appli- 
cable for its solution. The single singularity is that a conversion of the initial conditions in conformity with 
(32) must be performed in each step. But this produces no difficulties and does not complicate the problem in 
practice. Condition (30) is used to seek hJ +I after which the quantity uJ(~) is found as a result of solving (25) 
in combination with the conditio.ns (26)-(29), (31)-(32). If the first and second members in the left side of (30) 
a re  denoted,  r e s p e c t i v e l y ,  by k] and 4 ,  then we obtain at  once 

hi+l .= hi ~ (k{ - -  k/) At (33) 
A 

found f r o m  (33) is used  to calcula te  U (~), a f te r  which the p r o c e s s  is r epea ted  so that  we The qua.nti~y hJ + l j +1 
obtain h J § , e tc .  F o r  j = 1, we m u s t  r e s o r t  to i te ra t ion  to de t e rmine  h t. Init ial ly se t t ing h~ = h ~ we find 
U](D and then h~ f r o m  (33). Then we again r e p e a t  the whole p rocedure  us ing h~, so that  we finally obtain h~. 
The p r o c e s s  is continued until the inequali ty Ihln_l-hln~ < e b e c o m e s  val id for  two values  found succes s ive ly ,  
where  e is a p rev ious ly  ass igned  sma l l  number .  The quantity hln is  taken as  the t rue  h 1. 

Le t  us note that  we could opera te  analogously in the next  s t eps ,  which would co r respond  to an impl ic i t  
s cheme  fo r  computing h i , but as  n u m e r i c a l  e x p e r i m e n t s  have shown, the impl ic i t  s cheme  elucidated above 
y ie lds  comple te ly  s a t i s f ac to ry  a c c u r a c y ,  while it is s imul taneous ly  l e s s  tedious.  Hence,  it was  taken as 
bas ic .  

A number  of n u m e r i c a l  t e s t s  w e r e  c a r r i e d  out to ve r i fy  the method proposed.  Consider  the f reez ing  
and thawing of snow-cove red  soil. The r e s u l t s  of a computat ion and of observa t ions  in nature  a r e  in good 
ag reemen t .  Data obtained in computing the thawing, fo r  which m a t e r i a l s  of an expedition of the Voeikov Main 
Geophysical  O b s e r v a t o r y  to the T s i m l y a n s k  r e s e r v o i r  (in the region of the col lect ive f a r m  "Gigant") were  
used ,  a re  p r e sen t ed  in Fig. 1. Fo r  a pos i t ive  a i r  t e m p e r a t u r e ,  the t e m p e r a t u r e  on the snow sur face  was zero  
and a t h r e e - l a y e r e d  med ium was  cons idered:  snow (m = 0), f rozen  soil  (m = 1), and thawed soil  (m = 2). At 
the H = 2m leve l ,  ~2(t) = 8~ which c o r r e s p o n d s  to tt~.e mean  mult iannual  soil  t e m p e r a t u r e .  After  the snow 
van i shes ,  a thawing l a y e r  occu r s  in the soil  f r o m  the top so that  the re  a r e  two thawing l a y e r s  (from above and 
f r o m  below) and a f r eez ing  l aye r  in between.  As an ana lys i s  shows,  the total  t ime  for  d i sappearance  of the 
f rozen  l a y e r ,  s t a r t ing  f r o m  the t ime  the snow fa l l s ,  is ~4 .5  days ,  which co r r e sponds  to actual  m e a s u r e m e n t s .  
Curves  2 and 3 in Fig. 1 i l lus t ra te  the behav ior  of the moving f r o z e n - l a y e r  boundar ies .  

The quantity A = LT[w~ was  used  in the computation.  Values of the the rmophys ica l  coeff icients  
we re  taken f r o m  handbooks.  

All the above r e f e r s  to a p r o b l e m  with boundary conditions of the f i r s t  kind on the outer  s u r f a c e s ,  but the 
a lgor i thm developed can,  in p r inc ip le ,  be used  even in the p r e sence  of boundary conditions of the second and 
thi rd  kinds. 
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In conclusion,  let  us note that  the method p roposed  can be modified.  Thus,  if the outer  given t e m p e r a -  
ture  v a r i e s  sufficiently smoothly during a long t ime ,  then there  is eve ry  foundation to consider  that  the r e l a -  
t ionship (19) r e m a i n s  valid in this interval .  The p rob lem can then be solved by par t i t ioning T into a number  of 
f iner  secti0r~s which will be the computa t ion  s t eps ,  and the value of the t e m p e r a t u r e ,  obtained in the p rev ious  in-  

te rva l ,  jus t  for  the value T = 1, will  be used  when going ove r  to the next  value of h3m . In the ca se  mentioned,  
such an approach  is  m o r e  efficient.  

t 
Z 

T(z,  t) 
X(z, t ) ,  a ( z ,  t) 

hm(t) 
H 
L 

7 
w~ 
W0 

N O T A T I O N  

is the t ime ;  
is the coordinate;  
is the t e m p e r a t u r e ;  
a re  the coefficients  of t he rma l  conductivity and t h e r m a l  diffusivi ty,  r e spec t ive ly ;  
a re  the coord ina tes  of the p h a s e - i n t e r f a c e  posit ion; 
is the lower  boundary coordinate;  
is the heat  of the phase  t rans i t ion;  
is the volume weight of the soil ;  
is the given moi s tu re  dis t r ibut ion in the soil;  
is the exper imenta l ly  de te rmined  quali ty of mois tu re  which does not f r e eze  at 0~ 
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SEIV~I-ANALYTICAL ALGORITHN~ F O R  THE A P P R O X I M A T E  

S O L U T I O N  O F  A N O N S T A T I O N A R Y  I N V E R S E  P R O B L E M  O F  

DIFFUSION ON THE BASIS OF A DIRECT METHOD OF 

SOLUTION, LINEAR PROGRAMMING, AND 

REGULARIZA TION METHODS 

P.  I .  B a l k  a n d  T .  V.  B a l k  UDC 536.24.02 

Some analyt ical  solutions of the d i rec t  p rob lem of diffusion are  p resen ted  for  infinite bodies.  
The d i rec t  solutions cons t ruc ted  a re  used in a lgor i thms  for  the approx imate  solution of the :aon- 
s ta t ionary  inverse  diffusion p rob lem.  

Resul t s  d i rec t ly  concerning the p r o c e s s  of diffusion sca t t e r ing  of a substance are  elucidated below. How- 
e v e r ,  because  of the analogy between the t h e r m a l  conduction and d i f f u s i o n p r o c e s s e s ,  the r e su l t s  obtained a r e  
au tomat ica l ly  c a r r i e d  over  to the contiguous thermal -conduct iv i ty  p rob l em.  

Let  0 ~  and 0xyz be the combined Car te s i an  r e f e r e n c e  syst~rns with the ~ and z axes  d i rec ted  downward. 

Let  us consider  the f r ee  diffusion p r o c e s s  in a ha l f - space  (in the absence  of sources  and sinks):  

y = {(~, n, ~) : i~t < r162 l~I < ~ ,  ~ >~ o}. (1) 
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